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Abstract With the proliferation of digital cameras and mobile devices, people are taking
much more photos than ever before. However, these photos can be redundant in content
and varied in quality. Therefore there is a growing need for tools to manage the photo col-
lections. One efficient photo management way is photo collection summarization which
segments the photo collection into different events and then selects a set of representative
and high quality photos (key photos) from those events. However, existing photo collec-
tion summarization methods mainly consider the low-level features for photo representation
only, such as color, texture, etc, while ignore many other useful features, for example high-
level semantic feature and location. Moreover, they often return fixed summarization results
which provide little flexibility. In this paper, we propose a multi-modal and multi-scale
photo collection summarization method by leveraging multi-modal features, including time,
location and high-level semantic features. We first use Gaussian mixture model to segment
photo collection into events. With images represented by those multi-modal features, our
event segmentation algorithm can generate better performance since the multi-modal fea-
tures can better capture the inhomogeneous structure of events. Next we propose a novel
key photo ranking and selection algorithm to select representative and high quality photos
from the events for summarization. Our key photo ranking algorithm takes the importance
of both events and photos into consideration. Furthermore, our photo summarization method
allows users to control the scale of event segmentation and number of key photos selected.
We evaluate our method by extensive experiments on four photo collections. Experimen-
tal results demonstrate that our method achieves better performance than previous photo
collection summarization methods.
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1 Introduction

Photo is a major form of content creation, providing unlimited usages in the daily life. The
proliferation of digital cameras and smart phones greatly facilitates the photography process
and encourages people to take more and more photos. However, large amount of redundant
photos corresponding to a specific event may be taken and stored in users’ mobile devices. It
leads to a growing demand for photo collection summarization tools, which can help people
to organize, browse and search their photo collections.

Photo collection summarization and event-driven summarization of videos have drawn
increasing attention and considerable research has been proposed [4, 5, 8, 9, 14, 15, 17,
18, 20, 21, 24–26]. Since a photo collection often records the sequential activities of peo-
ple, an effective way to summarize it is to segment the photo collection into events and
then select key photos from each event for summarization. The key photos are the ones
which are both representative and with high-quality in the events. Previous photo sum-
marization works mainly rely on photos’ time and low-level visual features only (such as
color, texture, etc.) in the event segmentation step and select fixed number of key photos
for each event in the key photo selection step [4, 14, 15, 20]. However, event segmentation
is a very challenging problem since event is a highly abstract and high-level concept. Pre-
vious event segmentation methods consider the low-level visual features of a photo only,
but ignore many other useful and important information, for example the high-level seman-
tic features and location information. As a consequence, those event segmentation methods
cannot achieve satisfactory performance. Besides, previous photo collection summarization
methods select the key photos mainly based on the representativeness only and do not take
photo’s quality into consideration. In fact, both quality and representativeness should be
simultaneously considered in the key photo selection stage. Moreover, prior summariza-
tion methods provide no flexibility in the event segmentation granularity and only choose
a pre-defined number of key photos from each event individually, leading to very limited
flexibility for people to manage the summarization results.

In order to tackle those problems, we propose a multi-modal and multi-scale photo col-
lection summarization method. In our method, we adopt multi-modal features including
time, texture features [23], high-level semantic features [3] and location features [13] for
photo collection event segmentation. High-level semantic features are extracted by a deep
convolutional neural network trained on a large scale of image collection [12]. Meanwhile,
GPS features are extracted from the EXIf of photos. With a combination of time, location
and semantic features, we can model the event concept of photo collections more precisely.
For better selection of key photos, we propose to evaluate photo’s importance by consider-
ing photo’s quality and representativeness simultaneously. In addition, we also present an
effective way to rank all photos in the photo collection based on the importance of both
photos and events. In this way, user can control the scale of the summarization by choosing
arbitrary number of key photos from this rank.

Our photo collection summarization method can be summarized as follows. Firstly, we
represent photos in the collection by their multi-modal features (time, high-level semantic
feature, GPS feature). Secondly, we use a Gaussian mixture model to cluster these photos
into different events based on their multi-modal feature, in which users are allowed to
control the scale/granularity of the events. Thirdly, our proposed photo ranking algorithm
is introduced to rank photos in the photo collection. Finally, multi-scale photo collection
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summarization is achieved by choosing arbitrary number of key photos from the ranking
list.

We evaluate our photo collection summarization method on a set of photo collections
consisting of 2849 photos collected from 4 users. The experimental results indicate that
our multi-modal feature based event segmentation algorithm performs better than low-level
feature based segmentation models [5, 21], and our key photo selection results fit the users’
need better than previous methods [5, 17].

The rest of this paper is organized as follows. Section 2 briefly reviews the related works.
Section 3 details our proposed algorithm, including photo representation, event segmenta-
tion and key photo selection. Extensive experiments and analyses are presented in Section 4,
followed by the conclusion and future work in Section 5.

2 Related work

Generally, photo collection summarization process has three steps. First, photos are ranked
in chronological order and represented by feature vectors. Second, photo collection is seg-
mented into different clusters (events). Third, key photos are selected from each event
for summarization. Therefore, we review the related work from those three aspects: photo
representation, event segmentation and key photo selection.

Photo representation As time stamp is a key factor for event clustering, lots of photo
summarization works are built based on analysing the date/time information of the photos
[8, 14, 20, 21, 26]. To overcome the limited information provided by time/date, subsequent
researches represent photos by incorporating content information, including color histogram
[8, 14, 16], texture histogram [7, 8], low-frequency DCT feature [5], Exchangeable Image
File Format (EXIf) [7, 8, 20]. For information in EXIf, Gong and Jain utilized scene bright-
ness value derived from focal length and aperture diameter [6, 7], while aperture, exposure
time and focal length were extracted in [17]. Although Gong and Jain point out that Global
Positioning System(GPS) is an important feature of photos [6], GPS has not been incorpo-
rated for photo collection segmentation yet. In addition, Deep Learning feature has achieved
progress in image representation [12], to incorporate this high-dimensional feature into our
algorithm, we need to reduce the feature dimension. Lots of algorithms are proposed to
do feature dimension reduction, including feature mapping and selection [10], subspace
learning [22], PCA [2] and sparse representation [2].

Event segmentation Generally, event segmentation of photo collection can be achieved
by setting boundaries in the timeline. Platt proposed to set a boundary between two photos
when their time gap was greater than 1 hour [20]. Later, he improved this work by using
adaptive threshold [21]. Graham et al. extended this local threshold-based algorithm by
introducing the intra-cluster rates and inter-cluster time gap to refine the original clusters
[8]. Gargi came up with a bottom-up and adaptive approach that marks long interval with
no capture as the end of an event and sharp local increase in the frequency of captures
as the start of an event [26]. In [5], boundaries are selected by applying confidence score,
dynamic programming or Bayes information criterion (BIC) criteria on the similarity matrix
of photos. More generally, the event segmentation process can also be treated as a clustering
problem. Loui and Svakis presented a 2−class K-means algorithm for event clustering,
followed by checking color similarity of photos within these clusters [14]. Gong and Jain
[6] used hierarchical agglomerative clustering algorithm to group photo collections. Hidden
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Markov model with learned parameters was adopted for photo collection segmentation in
[21]. Mei et al. addressed this problem by utilizing a unified probabilistic framework to
model all the photos, then event was discovered by fitting the generative model [17].

Key photo selection Current key photo selection algorithms mainly rely on photo’s rep-
resentativeness only [4, 5, 17]. Cooper et al. simply recommend the earliest photo in each
event as key photo [5]. Mei et al. choose photo with the maximum a priori probability
among photos in current event as the representative photo [17]. In [4], key photo is auto-
matically selected by examining the mutual relation between near-duplicate photo pairs in
photo clusters. There are two drawbacks in current key photo selection algorithms. First,
photo importance is only evaluated by representativeness, while the image quality and the
importance of events are ignored. Second, only a fixed number of photos are selected from
events, thus users have no access to multi-scale summarization of the photo collection.

3 Multi-modal and multi-scale photo collection summarization

The framework of our proposed photo collection summarization model is presented in
Fig. 1. First, photos are represented by their time stamp, GPS information, and high-level
content feature. Second, photos are clustered into events via a Gaussian mixture model in
the multi-modal feature space. Finally, we build a photo rank for multi-scale summariza-
tion of the photo collection. User can choose arbitrary number of key photos from this rank.
The multi-modal features utilized for photo representation are described in Section 3.1. Sec-
tion 3.2 and Section 3.3 present our event segmentation algorithm and key photo selection
algorithm, respectively.

3.1 Multi-modal photo representation

The multi-modal features used for photo representation in our event segmentation algorithm
include time, color, texture, location, and deep learning feature.

Fig. 1 Illustration of the proposed photo collection summarization method. Photos are firstly ordered accord-
ing to their time stamp. With photos represented by multi-modal features, Gaussian mixture model is applied
for event segmentation. Finally, key photos are ranking and selected for summarization
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Time (TM) − For each photo, the EXIf headers are processed to extract the date/time
stamp. If the time stamp is unavailable, we rely on the modification time of photo instead.

Location (G) − Generally, GPS information can be obtained from the longitude and lati-
tude stamp in EXIf headers. If location information is not included in the headers, we set
it to be the same as the closest photo in time stamp.

Color (C) − For a color image x with N pixels,we derive a color histogram (64D)
H(x) = [h1, h2, ..., h64] in RGB color space, where hi = Ni/N is the proportion of
pixels whose value falls into bin i.

Texture (TX) − Coarseness, contrast, directionality(20D) of the Tamura descriptor [23]
are adopted to describe the texture feature of photos.

Deep Learning feature (DL) − With the help of the open source deep learning frame-
work called Caffe [28], we implemented the deep convolutional neural network in [12]
to extract a 4096D deep feature of images. In [12], Krizhevsky et al. designed a deep
convolutional neural network with millions of parameters and applied it on the ImageNet
classification. Their model contains eight learned layers and adopts the Rectified Linear
Units as the activation function [27]. The overall architecture of their network is shown
in Fig. 2. To ensure that other features are not covered by the high-dimensional deep
learning features, we adopt PCA [1] to reduce deep feature from 4096D to 128D with
little degradation of performance.
It can handle with the RGB images instead of gray images only. Their neural network

consists of five convolutional layers and three full connected layers. The output of the last
layer is followed by a 1000-way softmax that produces a distribution over the given 1000
image class labels. Then supervised learning process is conducted on the training set of
the ImageNet database. Finally it achieves a breakthrough on this challenging dataset
which proves its descriptive power on all kinds of images. In this paper, we firstly imple-
ment a deep convolutional neural network that has the same architecture with [12]. Then
this neural network is carefully trained on the ILSVRC-2012 training set, which extracts
1.2 million images that cover 1000 categories from the whole ImageNet database. In this
way, the convolutional neural network accumulates enough knowledge to understand var-
ious images well. For a given image xi , the last hidden layer of the convolutional neural
network produces 4096-dimensional activations, which is the deep learning feature we
use to represent the high-level feature of xi .

Fig. 2 The architecture of deep convolutional neural network used by Krizhevsky et al. The first five layers
of it are convolutional and the following three layers are fully-connected. Input images are resized to be
224 ∗ 224 ∗ 3
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3.2 Event segmentation

Definition Given the Gaussian mixture model, photos in the same event share the same
distribution in the multi-modal feature space, i.e., they are close in time, location and con-
tent. Different events should differ in concept classes and distributions. That is to say, each
photo xi ∈ X = {x1, x2, ..., xN } corresponds to one latent semantic concept class - event
ej ∈ E = {e1, e2, .., eK }, where N and K are the total numbers of photos and events in the
photo collection X, respectively. Naturally, the probability of photo xi generated from event
ej can be formulated as p(xi |ej ).

Probabilistic model In our model, a photo can be represented by a continuous feature
vector consists of time (TM), location (G), color (C), texture (TX), deep learning (DL)
feature. If we assume that all these components are independent given the latent concept
event ej , then a priori probability p(xi |ej ) can be computed by :

p(xi |ej ) = p(T Mi |ej )p(Gi |ej )p(Ci |ej )p(T Xi |ej )p(DLi |ej ) =
L∏

l=1

p(xi,l |ej ) (1)

where xi = (xi,1, xi,2, ..., xi,L). xi,l is the lth metadata of photo xi(l = 1, 2, ..., L), and
L = 5 is the number of components of the feature vector. Each component xi,l is generated
by a single Gaussian distribution:

p(xi,l |ej ) = 1
√
2πσ 2

i,l,j

e
− (xi,l,j −ui,l,j )2

2σ2
i,l,j (2)

Learning parameters via EM training We adopt the most widely used principle - max-
imizing the log-likelihood of the joint distribution to train parameters of each Gaussian
distribution. The objective function can be formulated as:

l(X; θ) � log

(
N∏

i=1

p(xi |θ)

)
=

N∑

i=1

log

⎛

⎝
K∑

j=1

p(ej )p(xi |ej , θ)

⎞

⎠ (3)

where p(xi |ej , θ) is computed according to (1) with θ given. p(ej ) is the priori probability
of event ej . K and N are the number of events and photos, respectively. To optimize the
model, we introduce EM training to tune the parameters. Before the EM training process,
values of parameters are initialized by K − means with a given K . The nth iteration of EM
training for the given K is presented in Algorithm 1.

The number of eventsK must be pre-defined to perform EM training. To tackle this prob-
lem, we propose to generate a series of candidate segmentations by applying EM training
to multiple Ks. Then we select the best K by using the model selection principle in [11] :

K∗ = argmax
K

{2 × l(X; θ) − mK × logN} (4)

Where mK = (K − 1) + K × NG , NG is the numbers of Gaussian distributions.

Multi-scale event segmentation In order to ensure that user can have great variety in
segmentation scale, we introduce a new scale variable s into our model selection principle
to adjust the scale of the final segmentation. The new selection principle turns to:

K∗ = s × argmax
K

{2 × l(X; θ) − mK × logN}, (5)
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where s = 1, 0 < s < 1, s > 1 correspond to proper scale, coarse scale and fine scale event
segmentation, respectively. In our experimental evaluation, we will test the performance of
our model in different segmentation scales. We summarize our multi-scale photo stream
segmentation algorithm in Algorithm 2.

3.3 Key photo selection

In this section, we describe our key photo selection algorithm for photo collection
summarization. Figure 3 shows the whole process of our algorithm.

In order to evaluate the importance of different photos, we propose to rank photos by
a combination of their quality, representativeness and popularity feature. Details of these
features are described as follows:

Quality (Q) − Users generally tend to choose photos with high quality as key photos,
therefore we introduce the quality assessment model in [29] to compute the quality
score as quality feature. In [29], hand-craft content features(23D) are extracted from the
photo, including hue histogram(8D), brightness histogram(4D), sharpness(1D), depth
of field(2D), hue histogram of the subject region(4D), average brightness of the sub-
ject region(1D), relative size of the subject region(1D), contrast between the subject and
background(2D). Then a SVM (Support Vector Machine) classifier is trained on the AVA
dataset [19], in which photos are labeled as aesthetic-good(1) or aesthetic-bad(−1). Then
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Fig. 3 Our proposed photo ranking algorithm for key photo selection. We first rank events by their popular-
ity, then photos within each event are ranked according to their importance scores. Finally, we subsequently
add photos to the final key photo list from top event to bottom event

label of the photo can be predicted as Li ∈ [−1, 1] by the classifier. Finally, quality of
photo xi can be computed as:

Q(xi) = 1

1 + exp(−Li)
(6)

Representativeness (R) − The key photos of a event should represent the visual theme of
this event, i.e. they must be highly representative. With the probabilistic model described
in the last section, the probability of photo xi belongs to event ej is p(ej |xi). So every
photo can be assigned to a event ek∗ with the maximum a posterior probability k∗ =
argmax

j

p(ej |xi). Thus the representativeness of event xi to its corresponding event ek∗

can be regarded as p(xi |ek∗), i.e.

R(xi) = p(xi |ek∗) (7)

Popularity (P) − When people are interested in a certain event, they tend to take lots of
photos about that event, vice versa. Therefore within a single event, they tend to take
more photos for scenery or object which are more attractive. In addition, a photo with
more similar photos in the same event tend to be more attractive. So we use the amount
of photos in the event to represent event popularity and amount of near neighbors to
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represent the popularity of a photo. To measure the popularity of photos within an event,
we propose to first infer the common “visual theme” of the event, then compute the
relative strength of each photo to that “visual theme”. The stronger the strength is, more
popular the photo will be. In order to find the multiple visual themes and their relative
strengths in the set of photos in each event, we apply visual rank algorithm in [11] to rank
the photos by popularity. Given n images in an event e = {x1, x2, .., xn}, we first build a
similarity matrix S, where Si,j measures the visual similarity between photo i and j .

Si,j ∝ exp{−‖xi − xj‖2} (8)

where xi, xj are the content feature(color, texture, deep learning feature) of photo i and
j , respectively. Then the visual rank V R of photos can be computed by iterating the
following equation:

V Rk+1 = dS∗ × V Rk + (1 − d)p (9)

where S∗ is the column normalized adjacent matrix of S, d ∈ [0, 1] is the damping factor
and p = [ 1

n
, 1

n
, ..., 1

n
]Tn×1 is the initial score of the n photos. Finally, the popularity score

of the photo xi can be presented as:

P(xi) = V R
f inal
i (10)

To enable our users to choose arbitrary photos for photo collection summarization as
they want, we propose to generate a rank list of key photo candidates, in which relatively
better photos will precede other photos. To build this rank, we need to rank events by their
importance (inter-event ranking), then rank photos within these events based on photo scores
(intra-event ranking).

Inter-event ranking After event segmentation in Section 3.2, all events are ranked in
descending order: E = {e1, e2, ..., eK } according to the number of photos in each event,
based on the assumption that an event contains more photos is more important.

Intra-event ranking After quality, representativeness, popularity of photo xi are
obtained, the importance score of photo xi can be calculated as:

Score(xi) = a × R(xi) + b × Q(xi) + c × P(xi), (11)

where a, b, c are non-negative weights of the three components and a + b + c = 1. In our
experiment, we simply set a = b = c = 1

3 . Now, we can rank photos within each event
according to their scores.

Key photo ranking and selection Finally, if required number of key photos is B, photos
to be chosen from each event is �B/K� or �B/K� + 1 , i.e. for the top r = B %K events,
we pick top �B/K� + 1 photos as key photos, while �B/K� photos are picked in other
events. The key photo ranking and selection process is illustrated in Algorithm 3.

4 Experiments

4.1 Experimental setting

In this section, we evaluate our proposed event segmentation and key photo selection
method and compare them with the baseline methods proposed in [5, 17, 21]. We invited
four users to share photos in their mobiles and cameras taken during the past two years. All
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photos have accurate time stamps, while only part of them have GPS information. Users
were invited to segment all of their photos to meaningful events and choose 1 ∼ 6 key pho-
tos from each event. Both are referred as ground truth for our photo event segmentation and
key photo selection algorithm. Table 1 lists the detailed information about the dataset.

We adopt the precision, recall and F-score metric described in [5] to evaluate the per-
formance of event boundary detection and key photo selection. In event segmentation,
precision indicates the proportion of correctly detected boundaries:

precisionseg = correctly detected boundaries

total number of deteced boundaries
(12)

Recall represents the proportion of true boundaries detected:

recallseg = correctly detected boundaries

total number of ground truth boundaries
(13)

The F-score measures the comprehensive performance:

F − score = 2 × precision × recall

precision + recall
(14)

Similarly, precision of key photo selection is defined as:

precisionselect = correctly selected key photos

total number of selected photos
(15)

4.2 Experimental results and analyses

We first evaluate the event segmentation algorithms. Table 2 shows the segmentation per-
formance of our algorithms as well as the baseline methods proposed in [5, 21]. It shows
that our model significantly outperforms the adaptive thresholding algorithm proposed in

Table 1 Detailed information
about the dataset Dataset Number Number of Number of

of photos events key photos

User 1 497 32 175

User 2 1086 95 288

User 3 564 107 145

User 4 702 28 140
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Table 2 Performance
comparison between our event
segmentation method and
baseline methods

Method Precision Recall F-score

PhotoTOC [21] 0.50 0.71 0.59

TEC [5] 0.39 0.54 0.45

Ours(time) 0.86 0.68 0.76

Ours(time+color+texture) 0.91 0.67 0.77

Ours(time+GPS) 0.85 0.72 0.78

Ours(time+deep) 0.88 0.71 0.79

Ours(time+GPS+deep) 0.93 0.69 0.79

[5] and similarity based algorithm in [21]. It demonstrates the effectiveness of our event
segmentation framework. We further conduct experiments to verify the performance of our
method with different features. We find that our model with GPS or deep learning feature
is better than that with low-level content feature only. It verifies that location and high-level
semantic features are helpful for event segmentation. Moreover, when multi-modal features
are used in our model (time+GPS+Deep), a better performance can be further achieved. It
achieves the highest precision and F-score with recall a little sacrificed.

We also evaluate our algorithm on small dataset (showed in Table 3) to see if our method
is effective user who only has a few photos. The results in Tables 4 and 5 reveal that our
algorithm still works well though number of user’s photo dataset is not so much.

To evaluate the performance of our segmentation algorithm for multiple scales, we invite
the 4 users to manually segment their photo collections into different number of events, and
the labeled number of events are corresponding to scale s = {0.5, 1.0, 1.5, 2.0}, respec-
tively. Table 6 shows that our model can provide users multi-scale event segmentation results
with robust performance.

In order to evaluate our key photo selection algorithm, we compare the performance
of our method with that given by the baseline methods proposed in [5, 17]. For fair com-
parison, we follow the setting in [5, 17] and choose one photo from every event. Table 7
shows the results of our key photo selection algorithm and that in [5, 17]. The interview
with our users indicates that, quality, representativeness as well as popularity are all consid-
ered in the process of selecting key photos to summarize each event. Therefore, our photo
selection method achieves a higher performance than representativeness or similarity based
algorithms [5, 17]. In addition, users suggest that a photo with faces is more likely to be
selected than other photos. In future work, we plan to add face features into the key photo
selection process.

Furthermore, we also test the key photo selection performance when different number of
key photos are required, instead of selecting only one key photo for each event. We select
B = {10, 50, 100, 150, 200} key photos for each user. The experimental results are given
in Table 8. It indicates that our photo selection algorithm is robust on selecting different

Table 3 Information about our
small dataset Dataset Number of Number of Number of

photos events key photos

User 5 60 7 15

User 6 76 10 23
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Table 4 Performance of Event
Segmentation on small Dataset Method Precision Recall F-score

Ours(time) 0.8 0.86 0.83

Ours(time+GPS+deep) 0.75 0.86 0.82

Table 5 Performance of Key
Photo Selection on small dataset Method Precision

Ours 0.58

Table 6 Performance of
multi-scale event segmentation Scale Precision Recall F-score

0.5 0.98 0.59 0.74

1.0(Default) 0.93 0.69 0.79

1.5 0.91 0.63 0.75

2.0 0.88 0.66 0.76

Table 7 Performance
comparison of key photo
selection. Our key photo
selection method significantly
outperforms the methods
proposed in [17] and [5]

Method Precision

Representative-based [17] 0.54

Similarity-based [5] 0.53

Ours 0.61

Table 8 Performance of
selecting different number of key
photos

Number of selected key photos B Precision

10 0.50

50 0.60

100 0.63

150 0.61

200 0.57

Same as number of key photos user selected 0.58
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number of key photos from the whole photo collection for users. We can see that when B

is small (for example B = 10) the precision is a little low. This is because the number of
selected key photos is much less than the number of ground-truth events. It is challenging
to select a small subset of key photos from those events accurately. When B is close to the
number of events, a better performance is achieved.

5 Conclusion

In this paper, we propose a multi-modal and multi-scale photo collection summarization
method. Multi-modal features, including GPS, time, low-level visual feature and high-level
deep learning feature are introduced for photo representation and event segmentation. We
use a Gaussian mixture model for multi-scale segmentation of photo streams and an adaptive
selection model for key photo selection. Our approach outperforms all baseline methods
and shows robust performance for different segmentation and selection scales.

In the future, we will improve our model from the following directions. First, user feed-
back and interaction can be utilized to improve the performance of our model. Second, to
choose key photos within an event, duplication is also an important issue to be discussed.
We will focus on those aspects to improve our model.
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